close
標題:
Vector
發問:
As follows: http://s453.photobucket.com/albums/qq252/tomchan1216/?action=view¤t=vector2.jpg
(a) PS = PR + RS = a - 3b + b = a - 2b. QR = QP + PR = a + a - 3b = 2a - 3b. (b) PS/PT = 1/h, so PT = hPS = h(a - 2b) = ha - 2hb......(1) h = lambda. QR/QT = 1/k, so QT = kQR = k(2a - 3b) = 2ka - 3kb ...(2) k = mu. Let O be the origin, let OP = p and let OQ = q. So OT = OP + PT = p + ha - 2hb ................(3) Also, OT = OQ + QT = q + 2ka - 3kb ............(4) But OP = OQ + PQ = so p = q + a, sub. into (3), we get OT = q + a + ha - 2hb = q + (1 + h)a - 2hb.......(5) Comparing (4) and (5), 2k = 1 + h ................(6) and - 3k = - 2h .................(7) Solving (6) and (7), we get k = mu = 2 and h = lambda = 3.
其他解答:
Vector
發問:
As follows: http://s453.photobucket.com/albums/qq252/tomchan1216/?action=view¤t=vector2.jpg
此文章來自奇摩知識+如有不便請留言告知
最佳解答:(a) PS = PR + RS = a - 3b + b = a - 2b. QR = QP + PR = a + a - 3b = 2a - 3b. (b) PS/PT = 1/h, so PT = hPS = h(a - 2b) = ha - 2hb......(1) h = lambda. QR/QT = 1/k, so QT = kQR = k(2a - 3b) = 2ka - 3kb ...(2) k = mu. Let O be the origin, let OP = p and let OQ = q. So OT = OP + PT = p + ha - 2hb ................(3) Also, OT = OQ + QT = q + 2ka - 3kb ............(4) But OP = OQ + PQ = so p = q + a, sub. into (3), we get OT = q + a + ha - 2hb = q + (1 + h)a - 2hb.......(5) Comparing (4) and (5), 2k = 1 + h ................(6) and - 3k = - 2h .................(7) Solving (6) and (7), we get k = mu = 2 and h = lambda = 3.
其他解答:
文章標籤
全站熱搜
留言列表