close
標題:

f.4 a.math.. compound angle

發問:

given that A and B are the roots of the equation tan^2 x - 3surd3 tan x + 1 =0 where A and B are acute angles with A
最佳解答:

By the relation between roots and coefficients, tan A + tan B =3surd 3 and tan A tan B =1 cot (A-B) =1/tan(A-B) =(1+tanA tanB)/(tanA- tanB) tan A + tan B =3srd 3 tan^2 A +2tan A tanB + tan^2 B= 27 tan^2 A -2tan A tanB +tan^2 = 23 (tan A-tanB)^2=23 tan A - tan B =-sqrt 23 so (1+tanA tanB)/(tanA- tanB) =(1+1)/-(sqrt23) =-2 sqrt 23

免費註冊體驗

 

此文章來自奇摩知識+如有不便請留言告知

其他解答:
arrow
arrow
    文章標籤
    没有合适的结果
    全站熱搜
    創作者介紹
    創作者 njtnvdt 的頭像
    njtnvdt

    百科全書

    njtnvdt 發表在 痞客邦 留言(0) 人氣()